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An examination is made of the method of straight lines for solution of
differential equations in pamial derivatives relating to a system of heat
and mass transfer equations,

In investigation of kinetics of a drying process
there is a need to solve a linear system of heat and
mass transfer equations [1]. The network method {2],
for example, is applied with success to this problem
and among other methods of solving equations in par-
tial derivatives, the method of straight lines [3] is
well known. A number of problems in heat transfer,
mechanics, and hydrodynamics have been solved by
this method [4—6]. The merit of the method is the
fact that solution of the problem is reduced, even-
tually, to be a standard system of ordinary differen-
tial equations. For this reason, the method has an
advantage compared with the network method when
analog computers are used. Moreover, for linear sys-
tems, the method allows us to obtain analytical de-
pendences of the desired functions on one of the in-
dependent variables, e.g., the Fourier number, for
definite values of the other variable. It should be
noted, however, that in the majority of cases of prac-
tical importance, a solution cannot be obtained in
explicit form, and the method of straight lines en-
counters the same difficulty as the network method.

The essence of the straight lines method and some
of its applications are described in detail in refer-
ences {7-9, 13, 14].

We shall examine the linear system to which we
may reduce the problem of heating and dehydration
of a capillary-porous sphere in an external medium
of constant temperature and with infinitely large veloc-
ity of propagation of heat and moisture:
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with the initial conditions

f(f, 0) = tov
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and boundary conditions of the 3rd kind
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The dimensionless numbers are as follows:
Lu = a,/a;, Bi; =aRA, Bi, =p R/a,,
Ko = pu%c,T%, Pn=8Tww,
Fo =a,1/R

A condition of finiteness for the functions t and u is
imposed, naturally, at the center of the sphere.

In accordance with the method we shall replace the
derivatives with respect to r in (1) by the finite dif-
ference relations:
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where h is the step size with regard to r (dimension-
less); k =1, 2, 3, ..., n; the number of internal
straight lines is equal to n.

At the boundary (straight line with number k =n +
+ 1) we have:
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Table
Dependence of Temperature and Moisture Content at the Sphere Sur-
face on the Fourier Number.

- Temperature Moisture Content

Fo 1 Line 8 Lines 6 Lines 1 Line 3 Lines 6 Lines
Q 0 0 0 1 1 1

0.1 0.017 0.022 0.022 0.980 0.977 0.976

0.5 0.114 0.075 0.072 0.907 0.919 0.922
1 0.221 0.221 0.136 0.823 0.852 0.861
2 0.529 0.246 0.238 0.677 0.734 0.744
3 0.878 0.340 0.331 0.557 0.632 0.640
4 1.260 0.421 0.412 0.458 0.547 0.555

We write down (Au)p+4 at the boundary in similar
fashion.

Allowing for the fact that rp+y = 1, we obtain, for
three straight lines, for example, the following sys-
tem of ordinary differential equations:
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where
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The initial conditions remain as before, while the
derivatives with respect to functions t and u on the
sphere surface are substituted from the boundary con-
ditions (3) into the system (5). Thus the boundary con-
ditions are included in the system in the form of dif-
ferential equations. However, the order of the system
may be lowered by two, if the boundary conditions are

du 2

(du)=2—=(1, Fo) + — ]

ou
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considered in the form of algebraic equations, by re-
placing derivatives of the first order with respect to

r by finite difference relations. This may prove to be
important when working with a small number of straight
lines.

The convergence of the method of straight lines for
linear systems, and also for systems with variable
coefficients in a rectangular region follows from the
lemma of section 3 of [10], under the following suffi-
cient condition:
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where ¢ and ¢ are the right sides in the boundary con-
dition of the 3rd kind:

ot

(R, vy =¢lt, {(R, 1), u(R, )],
or

gfr‘—(R, ) =plv, (R, 1), u(R, 7]

Here we assume the existence and uniqueness of the
solution of the mixed problem (1)-(3), and the con-~-
tinuity and sufficient smoothness of the coefficients
and of the solutions themselves.

In the case of the linear system (1) the condition
of convergence has the form

Bi, > (1 —e&)KoLuBi,,,
Bi,, > (I — <) PnKoLuBi,, + Bi,Pn.

The estimates demonstrating the convergence of
the method are certainly above the accuracy of in-
terest to the investigator, as a rule. We therefore
require to solve the problem for 1, 2, 3, etc., straight
lines, with the object of determining the relative dis-
crepancy between the respective approximations. A
tentative criterion of convergence of the method in a
given region of variation of the arguments could be
a monotonic decrease in these discrepancies as we
increase the number of straight lines taken. A mea-
sure of the accuracy are the discrepancies, required
especially in solution of non-linear problems, in which
it is not possible to compare the approximate results
with an exact analytical expression. It should be noted
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that the above empirical criterion for assessing the
accuracy of the method is the same as in the network
method, when one wishes to obtain the "optimum" step
sizes to secure the required accuracy for a minimum
expenditure of effort [11].

We shall solve the system (5) and obtain the de-
sired functions of Fo on the given straight lines. Car-
rying out the appropriate numerical integration with
respect to r, we find the dependence of the mean
values of temperature and moisture content on Fo.

In the event that the deviation of the central functions
from the surface functions is not appreciable, we may
use only the surface functions in investigating the
technological conditions.

To illustrate the above method we shall examine a
numerical example with the following initial data:

Big = 0.05; Biy, =0.05; Lu =1;-Ko =0.1; Pn = 0; e = 1;
ug = 0; ty = 0; ug = L. The results of the calculation of
temperature and moisture content on the sphere sur-

face are presented in the Table.

It may be seen from the Table how sharply the values
of the desired functions differ for one and three lines,
whereas the deviations between the values for three
lines and six lines are already no greater than 5%. A
similar thing is true of the dependence of temperature
and of moisture content on Fo on the internal straight
lines. The dependence of the above quantities on the
coordinate r has the form of a parabola whoge curva-
ture drops with increase of Fo, which corresponds to
the description of the actual process.

The specific manner of applying the method is the
same for a non-linear system as for the linear case,
the coefficients being the unknown functions t}, and uy,
while the system of ordinary differential equations
remains non-linear. Examples of a non-linear finite
difference exercise of the method are the cases dealt
with in [2], where the solution is obtained of a mixed
problem for a coupled transfer system by the network
method, and in [12], where an unsteady heat transfer
problem is solved on analog computers by the method
of straight lines.

By way of comment on the insufficient study that
the method has received, we note the possibility of
using it to solve a number of particular problems in
heat and mass transfer.

NOTATION

t is the temperature of the body being examined,
relative to the temperature of the medium T;; u is
the specific moisture content of the body under exami-
nation, relative to the initial moisture content u; ris
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the space coordinate, referred to the sphere radius
R; ue is the equilibrium moisture content, relative to
the initial moisture content u’ Fo, Lu, Ko, Pn, Big,
Bi,, are the Fourier, Lykov, Kossovich, Posnov, and
heat and mass transfer Biot numbers;'dm is the mois~-
ture diffusion coefficient; aqg is the thermal diffusivity;
A is the thermal conductivity; cq is the specific heat
of the moist body; 6 is the thermogradient coefficient;
o is the heat transfer coefficient; g is the mass trans-
fer coefficient; & is the phase transformation param-
eter; 7 is the time; A is the Laplace operator; k is the
number of the straight line; t',u' are the derivatives
of the desired functions with respect to Fo; 8t /or is
the derivative at the point (r), Fo).
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